On stabilization of discrete-event processes

Y. BRAVE and M. HEYMANNY

Discrete-Event processes are modeled by state-machines in the Ramadge-Wonham framework
with control by a feedback event-disablement mechanism. In this paper concepts of stabilization
of discrete-event processes are defined and investigated. We examine the possibility of driving a
process (under control) from arbitrary initial states to a prescribed subset of the state set and then
keeping it there indefinitely. This stabilization property is studied also with respect to 'open-loop’
processes (i.e., uncontrolled processes) and their asymptotic behavior is characterized. To this
end, such well known classical concepts of dynamics as invariant-sets and attractors are redefined
and characterized in the discrete-event control framework. Finally, we provide polynomial time

algorithms for verifying various types of attraction and for the synthesis of attractors.

1. Introduction

This paper is a preliminary investigation of the concepts of stabilization of discrete-event
processes (DEP). We adopt a slightly modified version of the framework proposed by Ramadge
and Wonham (1987 a, 1987 b, Wonham and Ramadge 1987) for the study of DEP. Our model is
thus a state machine with a means of external control: a feedback event-disablement mechanism.
Unlike Ostroff and Wonham 1987, Brave and Heymann 1989, Golaszewski and Ramadge 1989,
we consider a state model describing the possible order of elementary events but not their exact
timing.

In most of the works concerning supervisory control of DEP (e.g., Cieslak et al. 1988, Cho

and Marcus 1987, Lin and Wonham 1987, Yong and Wonham 1988) it is assumed that the initial
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state of the process is fixed, known apriori and one of the 'legal’ states of the process. The control
problem is then to synthesize a supervisor which confines the behavior of the process, initialized
at the prespecified initial state, to within legal bounds. However, there are cases in which either
the initial state is not one of the legal states of the process or it is unknown apriori. In such cases

the question of stabilization is of great interest.

In this paper we study the ability of a process to reach a set of target states from an arbitrary
initial state and then remain there indefinitely. This stabilization property is examined under
different control strategies. To this end, the classical concept of attraction (Bhatia and Szego
1967) is reformulated and characterized in our framework. Polynomial time algorithms are

provided for the verification of different types of attraction.

This paper is organized as follows. In the remainder of this section we give some
terminology and notation. Invariant sets of states and realizable processes are defined in section
2. In section 3, the notion of strong attraction is introduced and examined with respect to
processes without external control. Further, an efficient algorithm for computing the asymptotic
behavior of such processes is proposed. Section 4 develops control strategies under which strong
attraction can be achieved. To this end, a weaker form of attraction is introduced. An efficient
algorithm for computing the region of weak attraction is provided in section 5. In section 6, an
illustrative example is given and the relation between attraction and recovery of failure is

mentioned.

1.1 Processes

Let = be a finite alphabet (event set). pkocess over Z is modeled as a finite (directed)
graphG = (V, E) whereV is a set of states (vertices) aBd] VxZxV is a set of edges. An edge of
Gis thus an ordered triple = (v, o, u) O E and it is said to beirected from v to u. The stater is

called thestart-state of e, the stateu is called theend-state of eando (X is the event associated



with e. If (v, g, u) O E we say thaw is apredecessor of uandu is a successor of. Edges with
the same start state and the same end state are patl@tkl. It is assumed that there are no two
edges going out of the same state associated with the same event, that is, for each pair of edges in

E
[ (v,o,u),(v,B,w)OE and a=p ] implies Uu=w .

We interpretG as a device that starts its execution at an arbitrary stdieV (v may be
determined by a nondeterministic mechanisn®Gior forced externally) and thereafter executes a

sequence of state transitions as permitte@&by

A path is a finite sequence of edges, e, ..., €, such that the end state gf_; is the start
state ofg,. The number of edges in a path is called the length of a path. The start of the path is
the start state ofe; and its end is the end state of,. To each path
(Vo, 01, V1), (V1, 02, V2), ..., (Vh-1, On, V) there corresponds a unique (state) trajectory
Vg, V1, ..., Vy. Further, ifvg = v, the trajectory is said to be closed. A closed trajectory in which
no state (except the start and end states) appears more than once is albbel aA graph

without cycles is calle@cyclic.

A statev is reachable from a stateu if there exists a path frommto v. A statev is said to be
reachable from a subset of stated v is reachable from at least one statedinThereach of A in

G, denotedg(A), is defined as the set of all statesGrthat are reachable frod

LetG =(V,E), 3 AOV. We say that a state ] V—-A is connected t@\ if there is a path
from v to a state inA. Further,G is called A-connected if eachv [0 V-A is connected tA. A
processz' = (V', E') is called asubprocess of the proces& = (V, E), denotedG'0 G, if V'OV

andE' 0 E.

The union of two processess; =(V1,E4) and G, =(V,, E,) is another proces$s
(written Gz = G10G,) whose state set i3 = V.0V, and whose edge setlks; =EE,. If v

is a state inG thenG -v denotes the subprocess@bbtained by deleting from G. Deletion of a



state always implies the deletion of all edges incident on that statds Hn edge irG, thenG —e
is a subprocess @b obtained by deleting from G. Deletion of an edge does not imply deletion

of its end states.

A subproces&' = (V',E')0G =(V, E) is called aninduced subprocess iE' contains all
the edges oE whose end points are iX'; in this case we say thad’' is induced byV'. The

process induced by’ is denoteckV'>.

1.2 Supervisors

As in Ramadge and Wonham 1987 a, we assume3ttainsists of two disjoint subsels,
and Z.: uncontrolled and controlled events. EventsZincan be disabled by external control
while events inx,, cannot be prevented from occurring. Clearly, this classification iafluces a

similar classification oE, that is,E = Eu['|EC whereE, = En(VxZ,xV) andE; =E - E,.
A supervisor for G is a mapS: V - 2™, For each state 0V the supervisor specifies a
subset of controlled events that must be disabled.

The concurrent operation of the procésand a supervisdg, denoted & G) and called the

closed-loop process, is defined as the subprodésss) of (V, E) satisfying the condition that

foralle=(v,o0,u) 0 E

eES iff o O S(v) .

2. Invariant Sets of States and Realizable Processes

LetG =(V, E) be a process and Iat0V, E'0 E. We say tha# is E'-invariant iff
(O(,o,u)0E" vOA = ulA.

That is, there is no edge ' leading out ofA. We remark that the important special case where

A is E,-invariant has been discussed in Ramadge and Wonham 1987 b, in connection with a



modular-approach solution for the problem of maintaining a predicak¢ionariant.

A subproces§&’' = (V', E') of the process = (V, E) is calledrealizable iff
(O(,o,u0F) vOV = (v,o,u)0E" .

That is, a subprocess’ [1 G is realizable iff every uncontrolled edge going out of a stat&firis

an edge ofG'. Moreover, it is easily seen that a subprocéss (V', E') is realizable iff there
exists a supervisds such that the closed-loop proceS8G) and the subproce$d’ have the same
'behavior’ in the sense that for each statél V', the set of all paths starting ais the same i1’

and §G). In fact, the notion of a realizable subprocess is closely related to the concept of

controllable language (Ramadge and Wonham 1987 a).

3. Strong Attraction

In this section we examine some properties of 'open-loop’ processes, i.e., processes without

external control. First we introduce the concept of strong attraction.

3.1 Strong attractors

Let G=(V,E) be a process and l&t, BV such that 3¢ ALB. We say thatA is a

G
strong attractor for B w.r.t. G, denotedA [ B, iff the following conditions are satisfied:
(al) Alis E-invariant.
(a2) for each state [ rg(B) there is a path that starts\aand ends irA.
(a3) there are no cycles &finrg(B) — A.
G

Thus, if A B then whenever the proces§sis initialized at statev [ B it always reache#\
within a finite number of state transitions and remainé.in

We show now that for each nonemiyinvariant subsef of V there exists a unigue largest

subset for whichA is a strong attractor. To this end, lé## AV be E-invariant, and define



Tg(A) to be the (finite) class of all subsets\for which A is a strong attractor, that is,

G
Tc(A)={BOVOAOB and AOB} .

Proposition 3.1

The classT¢(A) is nonempty and closed under set union.

Pr oof

Nonemptiness is immediate sind® [0 Tg(A). To prove closure under set union let

B1, B, OTg(A), and note that

rs(B10B3) =rg(B1)Urg(B2)

whenceB[1B, satisfies condition (a2). To see that condition (a3) holds with resp&f[fiB,
assume to the contrary theg(B,0B,) — A contains a cycl€ =v,,vy, -+, V, W =V1. Since
condition (a3) is satisfied w.r.tB; andB, separately, it follows that there must exist states

andyv; +1 such that
v, Org(B1) —A and viy,; Org(By) —A. (3.1)

However, (3.1) is impossible since there is an edge fvpto v, .1, and condition (a3) is satisfied
with respect to;[0B>). This concludes the proof.

L]
An immediate consequence of proposition 3.1 is igfA) has a unique maximal element.

G
The maximal seB for which A 00 B is denoted\¢(A) and called theegion of strong attraction

of Aw.r.t. G. For a subsef which is notE-invariant we will say thal\g(A) = O . If Ag(A) =V

G
we say thatA is aglobal strong attractor w.r.tG (denotedA O ). In cases of no confusion we
shall not mention the underlying process and write, e.g.,Ahata global strong attractor. It is

readily verified that in the case of global strong attraction conditions (a2) and (a3) can be written



as
(a2) G is A-connected.
(@3) G - Ais acyclic.

3.2 Asymptotic behavior

The meaning of a subsat(]V being a global strong attractor is that there exists a number
N < [W-AOsuch that every trajectory @ of length greater thaN ends inA. Further, the subset
A is reachable from each state Vh In other words, initializing the process at an arbitrary state
v OV causes the process to reach a staté in a finite number of state transitions. Once the

process reaches a stateAiit remains inA.

A natural question that arises is whether we can maximally restrict the state domain in
which the process, initialized at an arbitrary state, can be 'found’ after a sufficient large number
(bounded by D) of state transitions. That is, we are interested in the asymptotic 'behavior’ of

the process.

Thus, letG =(V, E) and letg(G) be the (finite) class of all subsets Wfthat are global

strong attractors w.r.c. That is,

g(G)={ADVDA§ } .

First we need the following obvious observations.

Observation 3.2

The state set 0B is a global strong attractor (w.r@).



Observation 3.3

Let C be a cycle ofc. ThenC is a cycle of <A>g for everyA 0 g(G).

Pr oof

An immediate consequence of conditions (al) and (a3).

The following proposition states thgt{G) is nonempty, closed under set intersection and

no two subsets af (G) are disjoint.

Proposition 3.4
LetG =(V,E). Theng(G)2 [ ,andifA;, A, 0g(G) then
0z A;nA,0g(G) .
Pr oof

Clearly, the nonemptiness af(G) follows from observation 3.2. Lef;, A, 00 g(G).
SinceG is Aj-connected (condition (a2’) applied #,), the subsefA, cannot beE-invariant if
AinA, = 0. Thus,A; andA, are not disjoint. We shall show now that n A, is a global

strong attractor, namely conditions (al) , (a2’) and (a3’) are satisfied with respgttoA,.

Condition (al) is immediate sind®; andA, are bothE-invariant. Next we have to verify
condition (a2’), namely that for every state1V there is a path which starts atand ends in

A1 n A,. To this end, assume that for some stajé]V there is no path fronv, to A; n As.

G
Since A1 O , there exists a patk, from v, to A, say tov, O A;. By the last assumption it is

G
clear thatv,; O A,. Similarly, A, O implies the existence of a path from v, to a state in

A, sayv,. SinceA; is E-invariant, every path that starts A&y ends inA;. In particular, it is

true with respect t®,, and thusv, 0 A; n A,. So we conclude that the paths; connectsyg



to A1 n A,, a contradiction.

Finally, observation 3.3 implies condition (a3’), namely tat (A; n A,) is acyclic.

Proposition 3.4 implies that the finite clag$G) contains a unique infimal element w.r.t.

inclusion, which is denotednf [g(G)]. Further, this infimal element satisfies the condition that

inf[g(G)]=n{ADOAOQG)} .

For an effective computation (i.e., a polynomial time algorithm) of the minimal global

strong attractor we need the following proposition.

Proposition 3.5
LetG =(V,E)andv OV. Thenv Oinf[g(G)] if and only if either
() visreachable from a state of a cycleGn ; or

(i) vhas no successors.

Pr oof
For abbreviation lew 2inf[g(G)].

(If). Clearly, every global strong attractor Gf contains all the states i@ which are 'dead-end’,
namely without outgoing edges. Otherwise, condition (a2’) cannot be satisfied. Thus condition
(i) is a sufficient one. As regards condition (i), we note that conditions (al) and (a3’) imply that
every cycle ofG is contained in every global strong attractor. Moreover, since every global
strong attractoA is E-invariant it follows that every state reachable from a stat#& must be also

in A. So we conclude that every state reachable from a state of a cy@lésim W, which is one

of the global strong attractors Gf.
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(Only if).  Fix v, O W and suppose, towards a contradiction, thatloes not satisfy conditions

(i) and (i), that is,
(iif) v, has at least one successor ; and

(iv) the subsek of all states inV from which v, is reachable satisfies the condition that every

state inX is not a state of a cycle iB.

We shall show now thatV—X is a global strong attractor, contradicting our assumption \tthat

the minimal one.

Let Y be the set of all states W from whichv, is reachable, i.,eY =W n X. Clearly,Y is
not empty (sincer, D WnX =Y) andW - X =W =Y. First we claim thatV - Y is E-invariant.

To see this, suppos®’ - Y is not E-invariant, and that for some 00 W - Y there exists an edge

G
(u,o,w) OE such thatw O W - Y. By the definition ofW it is clear thatW [0  and thus the

E-invariance oW impliesw O W. Since
(wOW and wOW-=-Y ) implies wiOyYOX,

it follows thatv, is reachable fromwv. Consequently,U, o, w) O E implies thatv, is reachable

also fromu, i.e.,u O, contradicting our assumption that] W - Y. SoW - Y is E-invariant.

Next we have to show thas is (W - Y)-connected, that is, there exists a path from each
state inV — (W -Y) to a state in\\V - Y). First we consider the statg. Sincev, O Y OW and
W is E-invariant then every successeoy of v, is in W (by assumption (iii),v, has at least one
successor). Furthew, O Y OX since otherwisey, is reachable fronv,;, meaning thaty is a
state of a cycle, in contradiction to assumption (iv). Thus[dW -Y and v, is connected to
(W-Y). Moreover, by the definition oX, v, is reachable from every state ¥rand thus each
state inX is connected toW - Y). Finally, Wis a global strong attractor and thus, by condition
(a2’), every state irV —W is connected either to/N{ —Y) or to Y X, which is connected to

W-Y.
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It remains to be shown th& — (W -Y) is acyclic, namely that every cycle & intersects
(W-Y). To this end, leC be a cycle ofG. SinceG — W s acyclic andW is E-invariant thenC
is contained inVN. Further, by assumption (iv), every stateMml X is not a state o€ and thusC

must be contained inN - Y). Thatis,G — (W -Y) is acyclic.

To summarize, we have showed that—Y is also a global strong attractor w.r@,

contradicting our assumption thét = inf [g(G)].

Using proposition 3.3 and theansitive closure of G (i.e., the directed graph in which there
is an edge fromv to u iff there is a nonempty path fromto uin G (Even 1979, Ch. 1)), the

infimal global strong attractorinf[g(G)] can be computed in polynomial time.

4. Weak Attraction

In this section we introduce a weaker form of attraction which can be obtained under a

suitable control.

4.1 Weak attractors

Let G=(V,E), ¥ AOBOV. The subsef is called aweak attractor for B w.r.t. G,

G (§6)
denotedA — B, iff there exists a supervis@such thatA [0 B.

Clearly, strong attraction implies weak attraction but the converse is in general not true.
Further, it is easily seen that a necessary condition for a subsetbe a weak attractor for

another subset is thatbe E,-invariant.

Necessary and sufficient conditions for Bgrinvariant subsef to be a weak attractor f@

are given by the following proposition.
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Proposition 4.1

G
Let G=(V,E), 3¢ AOBOYV, such thatA is E,-invariant. ThenA — B if and only if

there exists a subproce&s = (V', E’) of G such thatB 1V’ and the following conditions are

satisfied:
(b1) G'is A-connected.
(b2) G'isrealizable.

(b3) G'-Aiis acyclic.

Corollary 4.1

G
If Ais E -invariant andG’ = (V', E') satisfies condition (b1)—(b3) théx ~ V'.

Proof of proposition 4.1

(If). LetG'=(V',E")0OGsuchthaB V' and (b1)-(b3) are satisfied. First we shall show that
G' contains a realizable subproceg3dor which A is a global strong attractor. Then we shall

construct fromP a supervisor as required for proving weak attraction.

The subproces® é(v, D) is obtained fromG' by removing all the controlled edges

leavingA, that is,
P=G'-{(v,o,u)0E/WOA and uOA} . 4.21)

Notice that for every set of edg&}s the notationD. stands for the subset of all controlled edges

in D, while D, denotes the subset of all uncontrolled edge.in

[=]
In order to show thatA 0 we have to verify conditions (al), (a2’) and (a3’). Indeed, since

AOBOV' it follows from (4.1) thatA is D¢-invariant. Further, since by the hypothesis of

proposition 4.1A is E,-invariant, the fact thaP is a subprocess d& implies thatA is alsoD,-
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invariant. The two last conclusions imply thais D-invariant, establishing condition (al).

As regards condition (a2"), sind@' is A-connected an® is constructed fronG' by only
deleting edges leaving, it follows thatP is alsoA-connected.

Finally, P — Ais a subprocess @' — A and thus the fact th&' — A is acyclic implies that

P — Ais also acyclic, satisfying condition (a3’).

So we conclude thatkéD . Moreover, the procesP results fromG' by a deletion of
controlled edges and thus the realizabilityRoffollows from the realizability ofG'.

Based on the realizable subprocéysa supervisolS is defined as follows. Lef be a
supervisor such that the closed-loop processGQé(V,ES) satisfies the condition that

ES=E,OD. That is, the state set of the closed-loop proc&6) is V (i.e., the state set db)
while its edge set is the union of the uncontrolled edgeS ahd the edges d?. Clearly, such a
supervisor exists sinde® contains all the uncontrolled edges@f

Now we claim thatP and &/G) coincide in their behavior in the sense that for every state

v OV, the set of all possible paths starting\ais the same irP and &/G). This property

follows from the following observations. The first one is tRat realizable and thus
( d(v,o,u)0E,) vav implies ,o,uOD.

That is, every uncontrolled edge Ehemanating from a state 0 V' is also an edge dP. The
second observation is that every controlled edg& aé an edge of %/ G) iff it is an edge ofP.
Combining these two observations leads to the conclusion that fer=afl/, o, u) [ E such that

vV,
eES iff eOD . (4.2)

An immediate consequence of (4.2) is that the reactf’ af the closed-loop procesS/(G)

isV', i.e.,
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rge(V)=Vv',
and thus it is readily verified that
P (6)
A implies A O V.
(§6) G

SinceBOV' itfollowsthat A 0 B,i.e., A « B.

G (§6)
(Only if). SupposéA — B, that is, there exists a supervisdsuch thatA [ B. LetES denote

the edge set of§G) and construct the required subprocéss (V', E') according to
V'=rgc(B)
and

E'={(v,o,u)0ES (4.3)

(§6G)
Clearly,BOV'. It remains to show thaB' satisfies conditions (b1)-(b3). Indeed, O B and

thus conditions (a2) and (a3), witls/G) instead ofG, imply the satisfaction of (bl) and (b3)
w.r.t.G'. Further, sincé&, O ES it follows by (4.3) thatG' is realizable, satisfying condition (b2).

O

Proposition 4.1 provides necessary and sufficient conditions for the solvability of the Weak
Attraction Problem (WAP), namely given a procgss=(V, E) and subsetsA 0B 0OV, verify
whether WAP is solvable or not. Notice thatd, = O (i.e., every edge o0& is controlled) then
WAP is solvable iff each state iB is connected to a state m However, if the former condition
does not hold (i.e.2, # O ) then WAP is not necessarily solvable even if the latter condition is

satisfied.

So far we considered onlf, -invariant subsets o¥ as candidates for weak attractors.
Clearly, this is a necessary condition. Suppose, however, that we are given two guasdf,

such thatA OB [0V andA is not E,-invariant. An interesting question is whether there exists a

G
subsetA’' J A such thatA' — B. That is, find (if exists) a subsét of A for which a supervisos
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can be synthesized, so that from each initial staféB, the closed-loop processS/(G) reaches

A’ in finite number of state transitions and remain&in
The following intuitive proposition states that the problem above is solvable iff the maximal
E,-invariant subset oA is a weak attractor foB. The fact that every subs@ét[1V contains a

unique maximalE,-invariant subset, denoted”, can be easily verified (cf. Ramadge and

Wonham 1987 b, sec. 7).

Proposition 4.2

G
LetG=(V,E), 3¢ AOBOV. There exists a subsét [1A such thatA" — B if and only

G
if A" _ B.

Pr oof
(If).  Trivially, since A* DA,

(Only if).  SupposeA* is not a weak attractor foB w.rt. G, and assume, towards a

G
contradiction, thatA' — B for someA'TA. It follows by proposition 4.1, thaG =(V, E)

contains a subprocess = (V', E') such thaB V' and conditions (b1)—(b3) are satisfied. That

is, G' is realizable andA’-connected, and>’' — A’ is acyclic. On the other hand, every weak
attractor is necessarilf,-invariant, implying the inclusiorA’ 0 A#. These two conclusions
imply the satisfaction of conditions (b1)—(b3) also w.r&*, namelyG' is A#-connected and

G'-A*is acyclic. This contradicts our assumption thdtis not a weak attractor fd.

O

An effective computation oA* is provided in Ramadge and wonham 1987 b, sec. 7, based

on a fixed point characterization 8f. The verification whetheA” is a weak attractor foB can

be accomplished by using the algorithm presented in section 5.
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4.2 Region of weak attraction

Let G=(V, E) be a process. In a previous section we showed that for exényariant

subsetA there is a (unique) maximal subdgfor which A S B, and thus the notion of the region

of strong attraction is well defined. In this section we examine whether an analogous notion can
be defined for weak attraction. That is, given a nonempty subdét/, we want to know
whether the class of subsets that are weakly attractedl isyclosed under set union, and hence

has a maximal element.

Let A beE,-invariant and define the class of sub3ats(A) according to

G
Wg(A)={ BOVOAOB andA — B}.

Proposition 4.3:

Let A be anE,-invariant subset of/. Then the clas®¥Vs(A) is nonempty and closed under

set union.

Pr oof

Let G=(V,E) and letA be anE,-invariant subset olV. The nonemptiness diNg(A)
follows from the fact thaf\ is a weak attractor for itself.

G G G
LetBq, By OWg(A), thatis,A « B; andA —~ B,. We have to show thak — (B1[B>).

Recall that according proposition 4.1 there exist subprocésses(V4, Eq1) andG, =(V,, E»)
such thatB; OV, B, OV, and each ofG; and G, satisfies conditions (b1)—(b3). It is quite
natural to verify whetheA is a weak attractor foB,B, by considering first the union a1
and G,, i.e., the proces€G., =(V,0V,,E{LE>5), and checking whether it satisfies the
conditions of proposition 4.1. Indeed, it is easily seen thatAfennectivity and realizability

properties are preserved under union of processes. Thus the p@gesatisfies conditions (b1)
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and (b2). HoweverGq, — A is not necessarily acyclic and thus condition (b3) is not necessarily
satisfied. Nevertheless, in the following we show tlab contains a subproce$ satisfying

conditions (b1)—(b3).

LetC =ug,uyq, - ",Ug, Uc=Ug be a cycle ofG,, — A, and lets=eq,e,, - - -, be the
path corresponding, i.e., the end states of an edgereu;_; andu;. For simplicity we assumed
here that there are no parallel edgesiand thus the pathis uniquely defined by the cycl€.
Since every edge df is in E1JE,, andG; — AandG, — A are acyclic, there exists at least one

edge, say, satisfying the condition that

eglE; and e, OE,—-E;. (4.5)

It is clear that the removal of the edge.,, as well as the deletion of any other edge of the
cycle C, opensC. However, the exclusive consequence of the deletiog gfis the opening of
C, without affecting conditions (b1) and (b2). That @,is no longer a cycle 061, —g+1 — A,
but G1, — 644 is still realizable andA-connected. This argument is proved as follows. U;dte
the end state of and the start state & ;. Sinceg 0 E; ande ., O E, it is clear thaty; is a
state inG; andG,. Now, the deletion o€ ,; might affect only theA-connectivity ofu; and those
states which are connected Aothroughu;. However, sinces .1 O E; and G, is A-connected,
there exists a path from; to A which does not traverse ;. ConsequentlyGq, — €41 is A-
connected and condition (b2) is satisfied w.r®, — .. As regards condition (b2), the
realizability of G1, — & 41 follows from the fact that, ,; must be a controlled edge. Otherwise it
would have followed from (4.5) tha, does not include the uncontrolled edge; emanating
from the statey; [0 V4, contradicting our assumption th&; is realizable. So we have proved

thatG, — g 41 is realizable A-connected and does not include the cyCle

The procedure above is repeated for each cyclé gf- A (the number of these repetitions
is bounded by E|). By the argument of the preceding paragraph it is clear that at termination the

resulting subproced$3 satisfies conditions (b1)—(b3). So, by proposition 4.1,
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G
A < (B,0B,).

O

SinceWg(A) is finite and closed under set union it follows théf(A) contains a unique
supremal element w.r.t. inclusion, denot@d(A) and called theegion of weak attraction of A

w.r.t. G. If Ais notEg-invariant we say thaQg(A) = O . Further, ifQg(A) =V we say thatA

G
is aglobal weak attractor w.r.t. G, denotedA .

It is easily seen that
Ne(A)Q (A)

for everyA V.

5. Computation of Qg (A)

Fix G=(V,E), ¥ AOV. Inthis section we propose an algorithm for the computation of
the region of weak attractiof@g(A). A by-product of this algorithm is a subprocess Gf
satisfying conditions (b1)—(b3). Further, the question of whethas a weak attractor for a
subseB [ A is equivalent to the question of whetHg@fQ s(A). Thus, the algorithm provides a

constructive method for verifying weak attraction.
Throughout this section we assume tAas E-invariant, for otherwis€®g(A) = O .

We derive now an intuitive consequence of proposition 4.1 concerning the region of weak

G
attraction. Since, by definitionA —~ Qg(A), it follows by proposition 4.1 that there exists a

subprocessG'= (V',E") of G such thatQg(A)OV' and G’ satisfies condition (b1)—(b3).
Moreover,G" must satisfy the condition that' = Qg(A). Otherwise the process’ would have
been a contradiction to the assumption tlef(A) is the largest subset for which is a weak

attractor.
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We have proved:

Proposition 5.1

LetG'=(V',E") OG be a subprocess such tlfag(A) OV'. If G’ satisfies (b1)—(b3), then

V'=Qg(A) .

The subprocesS’' = (V', E’) in proposition 5.1 is not necessarily unique. However, its state
setV' is unique. The result of the algorithm below for computig(A) is a subprocess db
that satisfies conditions (b1)-(b3) and whose state s@tid). But first we need the following

definition.

Let G'=(V',E")OG =(V, E) be a process satisfying conditions (b1)—(b3), thaldsjs
realizable andd-connected an®’' — A is acyclic. We say that a statel] V-V' is G'-attractable
iff vis a predecessor of a state\ih and every uncontrolled edge & leavingv ends inV', that

is,v OV-V'is G'-attractable iff
(i) (=2(v,o,u)0E) udV' ;and
@i (O(,o,u)0E) uav.

Now we are ready for the following

ALGORITHM

Input : A processG =(V, E) and a subseA V.
Output : A subprocess? whose state set i92g(A).
(1) LetP,2(U,,D,) =<A>s , j:=0.

(2) Ifthere are nd?j-attractable states M - U;

thenP = P;, stop.
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(3) Letv OV -U; be aP;j-attractable state.

DefineP; ., 4 (Uj+1,Dj+1) as

Uj+1:UjD{V}

Dj+1=D;j D{(v,o,u)DEDuDUj} .

ji=j+1, goto(2).

That is, the construction of a subproc&d'swhose state set iQg(A) is started from the
subprocess, induced byA (step (1) ). Then, in each iterationa new subprocesB;,; is
constructed (step (3) ) fronP; by adding aP;-attractable state together with every edge going
from v to a state ofP;. This procedure terminates whép has no more attractable states (step
(2).

Since in each iteration the state setRpfincreases by one state, the number of iterations is
bounded by Y|. Further, it is easily seen that the verification of step (2), namely that there
exists aP;-attractable state iK' — U, is of complexityO(|Z| [V]). Thus, the complexity of the
algorithm above i©(|Z]| [V|?).

The correctness of this algorithm is formally stated in the following theorem.

Theorem 5.1
LetP =(U, D) be the process obtained in step (2). Then
(i) P satisfies conditions (b1)—(b3).

(i) U =Qg(A).

For the proof of Theorem 5.1 we need the three following propositions. Intuitively, the first

proposition states th# is a weak attractor for the state set of each proBgsEormally, we have



-21-

the following

Proposition 5.2

For every iteration, the proces®; satisfies conditions (b1)—(b3), that B; is realizable

andA-connected an®; — Ais acyclic.

Proof of Proposition 5.2

This proposition is proved by induction on the number of iterations. Let
Po é(Uo, Do) =<A>g, i.e., P, is the process induced b& Trivially we have thatP, is A-
connected and thd®, — A is acyclic. The realizability oP, follows from the facts tha# is E-
invariant and thatD, contains every edge o6 whose end points are ih. Thus, every

uncontrolled edge leaving a stateAris in D,

Suppose the proposition holds for the iteratipnand letv 0V - U; be aP;-attractable
state andP; 1 = (Uj+1, Dj+1) be the process as defined in step (3). We have to showPjhat

satisfies conditions (b1)—(b3).

As regards (b1) and (b2pfconnectivity and realizability), it is enough to consider the state
vin Pj,; because according to the inductive hypoth&sigs A-connected and realizable. Indeed,
since v is Pj-attractable it follows thatv is a predecessor of a state B, say u [ U;.
Furthermore, the assumption tHatis A-connected implies the existence of a path froro a
state inA, as well as fronv. SoP;.; is A-connected. Next, the;-attractability ofv implies that
every uncontrolled edge leavingends inUj, i.e., every uncontrolled edge leavings included

in Dj+1- SOPj41 is realizable.

Finally, P;.1 —Ais acyclic becaus®; — A is acyclic and every edge addedg, in order
to form Dj 44, is directed fronv to a state irlJ;. Thus we conclude thd, ,; satisfies conditions

(b1)-(b3).
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The second proposition clarifies the role of attractable states.

Proposition 5.3

Let P =(U,D)OG such thatA OU and P satisfies conditions (b1)—(b3). Then evdty

attractable state [0V — U is in the region of weak attraction &f i.e.,

v [ G(A)

Proof of Proposition 5.3
Let P=(U,D)OG such thatAOU and P satisfies (b1)—(b3), and let0O0V — U be P-
attractable. Define the proceBs= (U’, D') according to
U=uD{v}
and
D'=D0O{(v,o,uyJEOUOU} .

It is easily seen thaP' results fromP after one iteration of the algorithm above. Thus, by
proposition 5.2 it follows thaP’ satisfies conditions (b1)—(b3). Further, by corollary 4.1 we get
that A is a weak attractor fotJ'. Since by the definition of the region of weak attraction
U'@Q (A) it follows thatv (X2 g(A), which completes our proof.

O

The final proposition required for the proof of theorem 5.1 characterizes the class of

subprocesses @ whose state set is the region of weak attractioA.of
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Proposition 5.4

LetP = (U, D) G such thatA 0 U andP satisfies conditions (b1)—(b3). Then
U=Qc(A)

if and only if there are n®-attractable states v — U.

Proof of proposition 5.4
LetP=(U,D)0G =(V, E) such thatA [0 U andP satisfies conditions (b1)—(b3).
(If). Let X denote the set of all statesVh— U that are predecessors of a statélin.e.
X={xOV-UO(=Z(x,o,u)dE) ulU} ,
and suppose that every stateXiis notP-attractable. We have to prove that= Qg (A).

First notice thaP satisfies conditions (b1)—(b3) and thus, by corollary 4.10Q g(A). For
the reverse inclusion we shall show first that none of the stat¥scam be in the region of weak

attraction ofA, i.e.,

X n Qg(A) = O

For this let x; OXOV -U and suppose, towards a contradiction, tkat[Xd c(A).
According to proposition 4.1, if YO{ x;}) [Q g(A) then there exists a subprocess
G'=(V',E") of Gsuch that U0 { x4, }) OV' andG' satisfies conditions (b1)-(b3). Since none
of the states inX is P-attractable then there exists an edge=(x,,0,Vv:) OE, such that
vi OU. The edgee; is uncontrolled and thug;, as well asv,, must be included inG'.
OtherwiseG' could not be realizable (condition (b2)). Moreov€&,is A-connected and thus it
must contain a trajectory fromy to a state inJ (notice that every state id is connected t&\ ).

Now, sincev, O U there are two possibilities: eithey OV —U — Xorv, O X

() If vi OV -U - Xthen every trajectory o' from v, to a state inJ must include at least

one state inX (this is because every predecessor of a statd ia in X). Lett be such a
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trajectory, namely a trajectory connectingto U, and letx, be the first state iX traversed
by t. Subsequently, denote bi; the subtrajectory oft connectingv; to x,, i.e.,
t1 =V, ...,Xs. Notice that none of the states tof is a state inJ (written t;nU = 0O).
Also, the conditionx, # x; must be satisfied in order th&' — A will be acyclic (otherwise

G' — A will contain the cyclex,,tq ).
(i) If vq O Xthenx, =v4 andt, is the empty trajectory.
Sincet is a trajectory ofG’ thenx, is also a state d&'. So we conclude that

X1 OV implies x,0OV'.

Following the argument of the previous paragraph we get@iahust contain a trajectory,
sayt,, connectingk, [0 Xto x5 0 X, wherexsz # X, X3 # X1 andxz O V'.

Continuing this procedure we end up with the following conclusions regarding the process
G' : x4 is connected tx, by t4, X, is connected tx3 by t,, - - -, X,-1 iS connected t, by
th-1, Xn IS connected ta, 1< j <n, byt, and

X1,X2, ", X OV

wheren is number of states iX andx #x; , i#].

It is readily verified that the trajectotty, tj,1, - - -, t, forms a cycle inG’ - A (notice that
AOU and ttnU=0,1<i<n). Thus we conclude that the assumptiondV'[Q ¢(A)
implies X OV'. However, the requirement fro@’ to be A-connected implies the existence of a

cycle inG' — A, contradicting condition (b3). So
X nQg(A)= 0O . (5.1)
As regards the rest of the statesMn- U ; since every path from a state ¥h—U - X to a
state inA must traverse at least one stateXiit is clear that

(V-U=-X)nQgA)= O . (5.2)
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>From (5.1) and (5.2) we get th&; (A) O U, which concludes the "if* part of this proof, i.e.,
U=Qg(A) .

(Only if). SupposeU = Qg(A) and assume there exists a statél V — U such thatv is P-
attractable. However, by proposition 5.3 it follows thdi) g(A), contradicting our assumption

thatU is the region of weak attraction &\

Proof of Theorem 5.1

Let P=(U,D)OG =(V, E) be the process obtained in step (2) of the algorithm. By
proposition 5.2 it is clear tha® satisfies conditions (b1)-(b3). Further, since every staié-

is notP-attractable (according to the condition of step (2) ) then by proposition 5.4

U =Qg(A).

6. Example

LetG =(V, E) be a process as displayed below:
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Cyq

Figure 1.

The state set o6 isV={0,1,...,7}, and theedge setiE={uy } 0{ ¢ }. The edges

denotedy; are uncontrolled while; denotes a controlled edge.

First we comment that the subskt = {1, 2} cannot be a strong attractor for any subset
of V (sinceA is notE-invariant). Nevertheles#, is E,-invariant and thus it has a potential to

become a weak attractor (e.g., by the deletiong)f

Next we consider the subseA={0,1,2}. Clearly A is E-invariant, and if
By =AU{3} then Ais a strong attractor fd8y w.r.t. G. It is easily seen tha is the maximal
subset oV which is strongly attracted bg. That is, Ag(A) =By . Further, we remark that the
region of strong attractiomg(A) can be computed in polynomial time by using the transitive

closure ofG (see at the end of section 3).

We examine now the weak attraction problem, namely given two subsésf V, decide

whether there exists a supervigsuch thatA is a strong attractor fdB w.r.t. (S/G). To this end,
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let A={0,1,2}, B;=A0{3,4} and B,=A0{7}. Recall that we defined weak

G
attractionA — B as the possibility of drivings (under control) from every initial state iB to

G
some state inA. Consequently, the deletion of the controlled edgge implies A « B;.

Furthermore, it is readily verified that the subprocesB; > (i.e. the subprocess induced by the

states 0B ) satisfies the conditions of weak attraction, as stated in proposition 4.1.

As regardsB,, it can be shown that no subprocess@fwhose state set contairi,,
satisfies the conditions of proposition 4.1 (i.e., (b1)-(b3)). Thus we concludéftisatot a weak
attractor forB,. Intuitively, this result can be explained as follows: SuppGsis initialized at
state 70 B,. Then eitherG reaches state 0 (and then is captured\)nor it executesu; and
reaches state 6. Since the edgas uncontrolled (and thus cannot be removed fi@irit follows
that the edgecg must not be deleted frons. Otherwise the subsedA={0,1,2} is not
reachable from state 6. However, the latter conclusion and the faatghatuncontrolled imply
the existence of the cyclé =6,5, 6. The cycleC prevents the guaranteed attraction of state 7
to a state inA, i.e., if G is initialized at state 7 then no control strategy can assureGhander

control) will reach the subsét after executing a finite number of state transitions.

The existence of a subproceS$ as required in proposition 4.1 can be effectively verified
by using the algorithm of section 5 for computing the region of weak attraction. If we apply the

algorithm to this example we obtain the following steps:
@ Start with the subproces$®, =<A>c =({0,1,2}, { uz,us,Ca,C51}); (step(1)).

(i) A candidate state for the next step is any predecessor of a statewhich is P,-
attractable. Since the uncontrolled edgesug andusg lead to a state iV -A, none of
the states 7 or 5 iB,-attractable. Thus, choose for example state 3 and construct (step

(3)) the subprocess
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P;1=({0,1,2,3}, {u3,us,€4,C5,C2,U1})

=<{0,1,2,3}>¢ .

(iii) Only state 4 isP ,-attractable and thus construct (step (3) again) the subprocess
PZ:({O’1’2’3’4}’ {U3,U4,C4,C5,Cz,Ul,UZ,Cl})

=<{0,1,2,3,4}>G .

(iv) There are ndP,-attractable states and thus the algorithm terminates; (step (2)).

By theorem 5.1 we conclude th@;(A)={0,1, 2, 3,4} =B,, and thatP, satisfies the
conditions of proposition 4.1. Based &3, a control pattern achieving weak attractionByf by

A'is readily synthesized (see the proof of proposition 4.1).

As was explained in the paragraph following proposition 5.1, the resulting process in step
(2) is not unique. For example, if we had interchanged steps (ii) and (iii) we would have ended
up with the procesP, — c1. Nevertheless, the region of weak attractiorAad$ yetB, since the
state set oP, —c4 is B;. This illustrates the consequence of proposition 4.3, namely that the

region of weak attraction is well defined.

Our intuitive conclusion thatA is not a weak attractor foB, is now an immediate

consequence of the fact tha} is not a subset dg(A).

We end this example by pointing out the close relation between attraction properties and the
problem of recovery from control failures. For example, suppése{0,1,2} is the 'legal’
state set oWV, and that a control failure may cau€eto reach the illegal state 7. Sinéeis not a
weak attractor foB,, no control strategy can assure a guaranteed recovery (i.e., a guaranteed

return of G (under control) to a legal state i) from this control failure. On the other hand,

G
A « B, implies the existence of a supervisor achieving guaranteed recovery from control failures

causingG to reach states 3 or 4. Such a supervisor is readily synthesized by using the output of

the algorithm in section 5.
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7. Conclusion

The paper has presented the concept of strong attraction which plays a key role in the
investigation of the following problems. The first one is the ability of a process to reach a set of
target states from an arbitrary state and then remain there indefinitely. Another problem, which is
closely related to the former, is the recovery from control failures. Finally, a special kind of
asymptotic behavior of a process has been characterized as its minimal strong attractor. The first
two problems were examined also under control, and an efficient procedure for synthesizing
controllers that improve the attraction ability of processes has been proposed. The properties of
such controllers and the extension of the above results for other representations of discrete event

processes are interesting topics for further research.
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