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On stabilization of discrete-event processes

Y. BRAVE† and M. HEYMANN‡

Discrete-Event processes are modeled by state-machines in the Ramadge-Wonham framework

with control by a feedback event-disablement mechanism. In this paper concepts of stabilization

of discrete-event processes are defined and investigated. We examine the possibility of driving a

process (under control) from arbitrary initial states to a prescribed subset of the state set and then

keeping it there indefinitely. This stabilization property is studied also with respect to ’open-loop’

processes (i.e., uncontrolled processes) and their asymptotic behavior is characterized. To this

end, such well known classical concepts of dynamics as invariant-sets and attractors are redefined

and characterized in the discrete-event control framework. Finally, we provide polynomial time

algorithms for verifying various types of attraction and for the synthesis of attractors.

1. Introduction

This paper is a preliminary investigation of the concepts of stabilization of discrete-event

processes (DEP). We adopt a slightly modified version of the framework proposed by Ramadge

and Wonham (1987 a, 1987 b, Wonham and Ramadge 1987) for the study of DEP. Our model is

thus a state machine with a means of external control: a feedback event-disablement mechanism.

Unlike Ostroff and Wonham 1987, Brave and Heymann 1989, Golaszewski and Ramadge 1989,

we consider a state model describing the possible order of elementary events but not their exact

timing.

In most of the works concerning supervisory control of DEP (e.g., Cieslak et al. 1988, Cho

and Marcus 1987, Lin and Wonham 1987, Yong and Wonham 1988) it is assumed that the initial
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state of the process is fixed, known apriori and one of the ’legal’ states of the process. The control

problem is then to synthesize a supervisor which confines the behavior of the process, initialized

at the prespecified initial state, to within legal bounds. However, there are cases in which either

the initial state is not one of the legal states of the process or it is unknown apriori. In such cases

the question of stabilization is of great interest.

In this paper we study the ability of a process to reach a set of target states from an arbitrary

initial state and then remain there indefinitely. This stabilization property is examined under

different control strategies. To this end, the classical concept of attraction (Bhatia and Szego

1967) is reformulated and characterized in our framework. Polynomial time algorithms are

provided for the verification of different types of attraction.

This paper is organized as follows. In the remainder of this section we give some

terminology and notation. Invariant sets of states and realizable processes are defined in section

2. In section 3, the notion of strong attraction is introduced and examined with respect to

processes without external control. Further, an efficient algorithm for computing the asymptotic

behavior of such processes is proposed. Section 4 develops control strategies under which strong

attraction can be achieved. To this end, a weaker form of attraction is introduced. An efficient

algorithm for computing the region of weak attraction is provided in section 5. In section 6, an

illustrative example is given and the relation between attraction and recovery of failure is

mentioned.

1.1 Processes

Let Σ be a finite alphabet (event set). Aprocess over Σ is modeled as a finite (directed)

graphG = (V, E) whereV is a set of states (vertices) andE ⊆ V×Σ×V is a set of edges. An edge of

G is thus an ordered triplee = (v, σ, u) ∈ E and it is said to bedirected from v to u. The statev is

called thestart-state of e, the stateu is called theend-state of e andσ ∈ Σ is the event associated
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with e. If (v , σ , u) ∈ E we say thatv is apredecessor of u andu is a successor ofv. Edges with

the same start state and the same end state are calledparallel. It is assumed that there are no two

edges going out of the same state associated with the same event, that is, for each pair of edges in

E

[ (v, α, u), (v, β, w) ∈ E and α = β ] implies u = w .

We interpretG as a device that starts its execution at an arbitrary statev ∈ V (v may be

determined by a nondeterministic mechanism inG or forced externally) and thereafter executes a

sequence of state transitions as permitted byE.

A path is a finite sequence of edgese1, e2, ..., en such that the end state ofei −1 is the start

state ofei. The number of edges in a path is called the length of a path. The start of the path is

the start state of e1 and its end is the end state ofen. To each path

(v0, σ1, v1), (v1, σ2, v2), ..., (vn −1, σn, vn) there corresponds a unique (state) trajectory

v0, v1, ..., vn. Further, ifv0 = vn the trajectory is said to be closed. A closed trajectory in which

no state (except the start and end states) appears more than once is called acycle. A graph

without cycles is calledacyclic.

A statev is reachable from a stateu if there exists a path fromu to v. A statev is said to be

reachable from a subset of statesA if v is reachable from at least one state inA. Thereach of A in

G, denotedrG(A), is defined as the set of all states inG that are reachable fromA.

Let G = (V , E), ∅ ≠ A ⊆ V. We say that a statev ∈ V −A is connected toA if there is a path

from v to a state inA. Further,G is calledA-connected if eachv ∈ V −A is connected toA. A

processG ′ = (V ′ , E ′) is called asubprocess of the processG = (V , E), denotedG ′ ⊆ G, if V ′ ⊆ V

andE ′ ⊆ E.

The union of two processesG1 = (V 1 , E 1) and G2 = (V 2 , E 2) is another processG3

(written G3 = G1∪ G2) whose state set isV 3 = V 1∪ V 2 and whose edge set isE 3 = E 1∪ E 2. If v

is a state inG thenG −v denotes the subprocess ofG obtained by deletingv from G. Deletion of a
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state always implies the deletion of all edges incident on that state. Ife is an edge inG, thenG −e

is a subprocess ofG obtained by deletinge from G. Deletion of an edge does not imply deletion

of its end states.

A subprocessG ′ = (V ′ , E ′) ⊆ G = (V , E) is called aninduced subprocess ifE ′ contains all

the edges ofE whose end points are inV ′; in this case we say thatG ′ is induced byV ′. The

process induced byV ′ is denoted<V ′>G.

1.2 Supervisors

As in Ramadge and Wonham 1987 a, we assume thatΣ consists of two disjoint subsetsΣu

and Σc: uncontrolled and controlled events. Events inΣc can be disabled by external control

while events inΣu cannot be prevented from occurring. Clearly, this classification ofΣ induces a

similar classification ofE, that is,E = Eu∪
.

Ec whereEu = E∩(V×Σu×V) andEc = E − Eu.

A supervisor for G is a mapS : V → 2Σc . For each statev ∈ V the supervisor specifies a

subset of controlled events that must be disabled.

The concurrent operation of the processG and a supervisorS, denoted (S/G) and called the

closed-loop process, is defined as the subprocess (V, E S) of (V , E) satisfying the condition that

for all e = (v, σ, u) ∈ E

e ∈ E S iff σ ∉ S(v) .

2. Invariant Sets of States and Realizable Processes

Let G = (V , E) be a process and letA ⊆ V, E ′ ⊆ E. We say thatA is E ′-invariant iff

( ∀ (v , σ , u) ∈ E ′) v ∈ A => u ∈ A .

That is, there is no edge inE ′ leading out ofA. We remark that the important special case where

A is Eu-invariant has been discussed in Ramadge and Wonham 1987 b, in connection with a
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modular-approach solution for the problem of maintaining a predicate onV invariant.

A subprocessG ′ = (V ′ , E ′) of the processG = (V , E) is calledrealizable iff

( ∀ (v , σ , u) ∈ Eu) v ∈ V ′ => (v , σ , u) ∈ E ′ .

That is, a subprocessG ′ ⊆ G is realizable iff every uncontrolled edge going out of a state inG ′ is

an edge ofG ′. Moreover, it is easily seen that a subprocessG ′ = (V ′ , E ′) is realizable iff there

exists a supervisorS such that the closed-loop process (S/G) and the subprocessG ′ have the same

’behavior’ in the sense that for each statev ∈ V ′, the set of all paths starting atv is the same inG ′

and (S/G). In fact, the notion of a realizable subprocess is closely related to the concept of

controllable language (Ramadge and Wonham 1987 a).

3. Strong Attraction

In this section we examine some properties of ’open-loop’ processes, i.e., processes without

external control. First we introduce the concept of strong attraction.

3.1 Strong attractors

Let G = (V , E) be a process and letA , B ⊆ V such that ∅ ≠ A ⊆ B. We say thatA is a

strong attractor for B w.r.t. G, denotedA ⇐
G

B, iff the following conditions are satisfied:

(a1) A is E-invariant.

(a2) for each statev ∈ rG(B) there is a path that starts atv and ends inA.

(a3) there are no cycles ofG in rG(B) − A.

Thus, if A ⇐
G

B then whenever the processG is initialized at statev ∈ B it always reachesA

within a finite number of state transitions and remains inA.

We show now that for each nonemptyE-invariant subsetA of V there exists a unique largest

subset for whichA is a strong attractor. To this end, let∅ ≠ A ⊆ V be E-invariant, and define
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TG(A) to be the (finite) class of all subsets ofV for which A is a strong attractor, that is,

TG(A) = { B ⊆ V  A ⊆ B and A ⇐
G

B } .

Proposition 3.1

The classTG(A) is nonempty and closed under set union.

Proof

Nonemptiness is immediate sinceA ∈ TG(A). To prove closure under set union let

B 1 , B 2 ∈ TG(A), and note that

rG(B 1∪ B 2) = rG(B 1)∪ rG(B 2) ,

whenceB 1∪ B 2 satisfies condition (a2). To see that condition (a3) holds with respect toB 1∪ B 2

assume to the contrary thatrG(B 1∪ B 2) − A contains a cycleC = v1 , v2 , . . . , vk, vk = v1. Since

condition (a3) is satisfied w.r.t.B 1 andB 2 separately, it follows that there must exist statesvi

andvi +1 such that

(3.1)vi ∈ rG(B 1) − A and vi +1 ∉ rG(B 1) − A .

However, (3.1) is impossible since there is an edge fromvi to vi +1, and condition (a3) is satisfied

with respect to (B 1∪ B 2). This concludes the proof.

�

An immediate consequence of proposition 3.1 is thatTG(A) has a unique maximal element.

The maximal setB for which A ⇐
G

B is denotedΛG(A) and called theregion of strong attraction

of A w.r.t. G. For a subsetA which is notE-invariant we will say thatΛG(A) = ∅ . If ΛG(A) = V

we say thatA is a global strong attractor w.r.t.G (denotedA ⇐
G

). In cases of no confusion we

shall not mention the underlying process and write, e.g., thatA is a global strong attractor. It is

readily verified that in the case of global strong attraction conditions (a2) and (a3) can be written
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as

(a2’) G is A-connected.

(a3’) G − A is acyclic.

3.2 Asymptotic behavior

The meaning of a subsetA ⊆ V being a global strong attractor is that there exists a number

N ≤  V−A  such that every trajectory ofG of length greater thanN ends inA. Further, the subset

A is reachable from each state inV. In other words, initializing the process at an arbitrary state

v ∈ V causes the process to reach a state inA in a finite number of state transitions. Once the

process reaches a state inA it remains inA.

A natural question that arises is whether we can maximally restrict the state domain in

which the process, initialized at an arbitrary state, can be ’found’ after a sufficient large number

(bounded by V  ) of state transitions. That is, we are interested in the asymptotic ’behavior’ of

the process.

Thus, letG = (V , E) and letg(G) be the (finite) class of all subsets ofV that are global

strong attractors w.r.t.G. That is,

g (G) = { A ⊆ V  A ⇐
G

} .

First we need the following obvious observations.

Observation 3.2

The state set ofG is a global strong attractor (w.r.t.G).
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Observation 3.3

Let C be a cycle ofG. ThenC is a cycle of <A >G for everyA ∈ g (G).

Proof

An immediate consequence of conditions (a1) and (a3’).

�

The following proposition states thatg (G) is nonempty, closed under set intersection and

no two subsets ofg (G) are disjoint.

Proposition 3.4

Let G = (V , E). Theng(G)≠ ∅ , and ifA 1 , A 2 ∈ g(G) then

∅ ≠ A 1 ∩ A 2 ∈ g(G) .

Proof

Clearly, the nonemptiness ofg (G) follows from observation 3.2. LetA 1 , A 2 ∈ g(G).

SinceG is A 1-connected (condition (a2’) applied toA 1), the subsetA 2 cannot beE-invariant if

A 1∩A 2 = ∅ . Thus,A 1 andA 2 are not disjoint. We shall show now thatA 1 ∩ A 2 is a global

strong attractor, namely conditions (a1) , (a2’) and (a3’) are satisfied with respect toA 1 ∩ A 2.

Condition (a1) is immediate sinceA 1 andA 2 are bothE-invariant. Next we have to verify

condition (a2’), namely that for every statev ∈ V there is a path which starts atv and ends in

A 1 ∩ A 2. To this end, assume that for some statevo ∈ V there is no path fromvo to A 1 ∩ A 2.

Since A 1 ⇐
G

, there exists a pathso from vo to A 1, say tov1 ∈ A 1. By the last assumption it is

clear thatv1 ∉ A 2. Similarly, A 2 ⇐
G

implies the existence of a paths1 from v1 to a state in

A 2, sayv2. SinceA 1 is E-invariant, every path that starts inA 1 ends inA 1. In particular, it is

true with respect tos1, and thusv2 ∈ A 1 ∩ A 2. So we conclude that the pathso s1 connectsv0
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to A 1 ∩ A 2, a contradiction.

Finally, observation 3.3 implies condition (a3’), namely thatG − (A 1 ∩ A 2) is acyclic.

�

Proposition 3.4 implies that the finite classg (G) contains a unique infimal element w.r.t.

inclusion, which is denotedinf [g(G)]. Further, this infimal element satisfies the condition that

inf [g(G)] = ∩ { A  A ∈ g(G) } .

For an effective computation (i.e., a polynomial time algorithm) of the minimal global

strong attractor we need the following proposition.

Proposition 3.5

Let G = (V , E) andv ∈ V. Thenv ∈ inf [g(G)] if and only if either

(i) v is reachable from a state of a cycle inG ; or

(ii) v has no successors.

Proof

For abbreviation letW =∆ inf [g (G)].

(If). Clearly, every global strong attractor ofG contains all the states inG which are ’dead-end’,

namely without outgoing edges. Otherwise, condition (a2’) cannot be satisfied. Thus condition

(ii) is a sufficient one. As regards condition (i), we note that conditions (a1) and (a3’) imply that

every cycle ofG is contained in every global strong attractor. Moreover, since every global

strong attractorA is E-invariant it follows that every state reachable from a state inA must be also

in A. So we conclude that every state reachable from a state of a cycle inG is in W, which is one

of the global strong attractors ofG.
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(Only if). Fix vo ∈ W and suppose, towards a contradiction, thatvo does not satisfy conditions

(i) and (ii), that is,

(iii) vo has at least one successor ; and

(iv) the subsetX of all states inV from which vo is reachable satisfies the condition that every

state inX is not a state of a cycle inG.

We shall show now thatW−X is a global strong attractor, contradicting our assumption thatW is

the minimal one.

Let Y be the set of all states inW from whichvo is reachable, i.e.,Y = W ∩ X. Clearly,Y is

not empty (sincevo ∈ W∩X = Y) andW − X = W − Y. First we claim thatW − Y is E-invariant.

To see this, supposeW − Y is not E-invariant, and that for someu ∈ W − Y there exists an edge

(u , σ , w) ∈ E such thatw ∉ W − Y. By the definition ofW it is clear that W ⇐
G

and thus the

E-invariance ofW impliesw ∈ W. Since

( w ∈ W and w ∉ W − Y ) implies w ∈ Y ⊆ X ,

it follows that vo is reachable fromw. Consequently, (u , σ , w) ∈ E implies thatvo is reachable

also fromu, i.e.,u ∈ Y, contradicting our assumption thatu ∈ W − Y. SoW − Y is E-invariant.

Next we have to show thatG is (W − Y)-connected, that is, there exists a path from each

state inV − (W − Y) to a state in (W − Y). First we consider the statevo. Sincevo ∈ Y ⊆ W and

W is E-invariant then every successorv1 of vo is in W (by assumption (iii),vo has at least one

successor). Further,v1 ∉ Y ⊆ X since otherwisevo is reachable fromv1, meaning thatvo is a

state of a cycle, in contradiction to assumption (iv). Thus,v1 ∈ W − Y and vo is connected to

(W − Y). Moreover, by the definition ofX, vo is reachable from every state inX and thus each

state inX is connected to (W − Y). Finally, W is a global strong attractor and thus, by condition

(a2’), every state inV − W is connected either to (W − Y) or to Y ⊆ X, which is connected to

W − Y.
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It remains to be shown thatG − (W − Y) is acyclic, namely that every cycle ofG intersects

(W − Y). To this end, letC be a cycle ofG. SinceG − W is acyclic andW is E-invariant thenC

is contained inW. Further, by assumption (iv), every state inY ⊆ X is not a state ofC and thusC

must be contained in (W − Y). That is,G − (W − Y) is acyclic.

To summarize, we have showed thatW − Y is also a global strong attractor w.r.t.G,

contradicting our assumption thatW = inf [g(G)].

�

Using proposition 3.3 and thetransitive closure of G (i.e., the directed graph in which there

is an edge fromv to u iff there is a nonempty path fromv to u in G (Even 1979, Ch. 1)), the

infimal global strong attractorinf [g (G)] can be computed in polynomial time.

4. Weak Attraction

In this section we introduce a weaker form of attraction which can be obtained under a

suitable control.

4.1 Weak attractors

Let G = (V , E), ∅ ≠ A ⊆ B ⊆ V. The subsetA is called aweak attractor for B w.r.t. G,

denotedA ←
G

B, iff there exists a supervisorS such thatA ⇐
(S/ G)

B.

Clearly, strong attraction implies weak attraction but the converse is in general not true.

Further, it is easily seen that a necessary condition for a subsetA to be a weak attractor for

another subset is thatA beEu-invariant.

Necessary and sufficient conditions for anEu-invariant subsetA to be a weak attractor forB

are given by the following proposition.
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Proposition 4.1

Let G = (V , E), ∅ ≠ A ⊆ B ⊆ V, such thatA is Eu-invariant. ThenA ←
G

B if and only if

there exists a subprocessG ′ = (V ′ , E ′) of G such thatB ⊆ V ′ and the following conditions are

satisfied:

(b1) G ′ is A-connected.

(b2) G ′ is realizable.

(b3) G ′−A is acyclic.

Corollary 4.1

If A is Eu-invariant andG ′ = (V ′ , E ′) satisfies condition (b1)–(b3) thenA ←
G

V ′.

Proof of proposition 4.1

(If). Let G ′ = (V ′ , E ′) ⊆ G such thatB ⊆ V ′ and (b1)–(b3) are satisfied. First we shall show that

G ′ contains a realizable subprocessP for which A is a global strong attractor. Then we shall

construct fromP a supervisor as required for proving weak attraction.

The subprocessP =∆ (V , D) is obtained fromG ′ by removing all the controlled edges

leavingA, that is,

(4.1)P = G ′ − { ( v , σ , u) ∈ Ec ′  v ∈ A and u ∉ A } .

Notice that for every set of edgesD, the notationDc stands for the subset of all controlled edges

in D, while Du denotes the subset of all uncontrolled edges inD.

In order to show thatA ⇐
P

we have to verify conditions (a1), (a2’) and (a3’). Indeed, since

A ⊆ B ⊆ V ′ it follows from (4.1) thatA is Dc-invariant. Further, since by the hypothesis of

proposition 4.1,A is Eu-invariant, the fact thatP is a subprocess ofG implies thatA is alsoDu-
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invariant. The two last conclusions imply thatA is D-invariant, establishing condition (a1).

As regards condition (a2’), sinceG ′ is A-connected andP is constructed fromG ′ by only

deleting edges leavingA, it follows thatP is alsoA-connected.

Finally, P − A is a subprocess ofG ′ − A and thus the fact thatG ′ − A is acyclic implies that

P − A is also acyclic, satisfying condition (a3’).

So we conclude thatA ⇐
P

. Moreover, the processP results fromG ′ by a deletion of

controlled edges and thus the realizability ofP follows from the realizability ofG ′.

Based on the realizable subprocessP, a supervisorS is defined as follows. LetS be a

supervisor such that the closed-loop process (S/G) =∆ (V , E S) satisfies the condition that

E S = Eu ∪ D. That is, the state set of the closed-loop process (S/G) is V (i.e., the state set ofG)

while its edge set is the union of the uncontrolled edges ofG and the edges ofP. Clearly, such a

supervisor exists sinceE S contains all the uncontrolled edges ofG.

Now we claim thatP and (S/G) coincide in their behavior in the sense that for every state

v ∈ V ′, the set of all possible paths starting atv is the same inP and (S/G). This property

follows from the following observations. The first one is thatP is realizable and thus

( ∀ (v , σ , u) ∈ Eu ) v ∈ V ′ implies (v , σ , u) ∈ D .

That is, every uncontrolled edge inE emanating from a statev ∈ V ′ is also an edge ofP. The

second observation is that every controlled edge ofG is an edge of (S/G) iff it is an edge ofP.

Combining these two observations leads to the conclusion that for alle = (v , σ , u) ∈ E such that

v ∈ V ′,

(4.2)e ∈ E S iff e ∈ D .

An immediate consequence of (4.2) is that the reach ofV ′ in the closed-loop process (S/G)

is V ′, i.e.,
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r (S/ G)(V ′) = V ′ ,

and thus it is readily verified that

A ⇐
P

implies A ⇐
(S/ G)

V ′ .

SinceB ⊆ V ′ it follows that A ⇐
(S/ G)

B , i.e., A ←
G

B .

(Only if). SupposeA ←
G

B, that is, there exists a supervisorS such thatA ⇐
(S/ G)

B. Let E S denote

the edge set of (S/G) and construct the required subprocessG ′ = (V ′ , E ′) according to

V ′ = rS/ G(B)

and

(4.3)E ′ = { ( v , σ , u) ∈ E S

Clearly,B ⊆ V ′. It remains to show thatG ′ satisfies conditions (b1)-(b3). Indeed,A ⇐
(S/ G)

B and

thus conditions (a2) and (a3), with (S/G) instead ofG, imply the satisfaction of (b1) and (b3)

w.r.t. G ′. Further, sinceEu ⊆ E S it follows by (4.3) thatG ′ is realizable, satisfying condition (b2).

�

Proposition 4.1 provides necessary and sufficient conditions for the solvability of the Weak

Attraction Problem (WAP), namely given a processG = (V , E) and subsetsA ⊆ B ⊆ V, verify

whether WAP is solvable or not. Notice that ifΣu = ∅ (i.e., every edge ofG is controlled) then

WAP is solvable iff each state inB is connected to a state inA. However, if the former condition

does not hold (i.e.,Σu ≠ ∅ ) then WAP is not necessarily solvable even if the latter condition is

satisfied.

So far we considered onlyEu-invariant subsets ofV as candidates for weak attractors.

Clearly, this is a necessary condition. Suppose, however, that we are given two subsetsA andB,

such thatA ⊆ B ⊆ V andA is not Eu-invariant. An interesting question is whether there exists a

subsetA ′ ⊆ A such thatA ′ ←
G

B. That is, find (if exists) a subsetA ′ of A for which a supervisorS



� �

- 15 -

can be synthesized, so that from each initial statev ∈ B, the closed-loop process (S/G) reaches

A ′ in finite number of state transitions and remains inA ′.

The following intuitive proposition states that the problem above is solvable iff the maximal

Eu-invariant subset ofA is a weak attractor forB. The fact that every subsetA ⊆ V contains a

unique maximalEu-invariant subset, denotedA #, can be easily verified (cf. Ramadge and

Wonham 1987 b, sec. 7).

Proposition 4.2

Let G = (V , E), ∅ ≠ A ⊆ B ⊆ V. There exists a subsetA ′ ⊆ A such thatA ′ ←
G

B if and only

if A # ←
G

B .

Proof

(If). Trivially, since A # ⊆ A.

(Only if). SupposeA # is not a weak attractor forB w.r.t. G, and assume, towards a

contradiction, thatA ′ ←
G

B for some A ′ ⊆ A. It follows by proposition 4.1, thatG = (V , E)

contains a subprocessG ′ = (V ′ , E ′) such thatB ⊆ V ′ and conditions (b1)–(b3) are satisfied. That

is, G ′ is realizable andA ′-connected, andG ′ − A ′ is acyclic. On the other hand, every weak

attractor is necessarilyEu-invariant, implying the inclusionA ′ ⊆ A #. These two conclusions

imply the satisfaction of conditions (b1)–(b3) also w.r.t.A #, namelyG ′ is A #-connected and

G ′−A # is acyclic. This contradicts our assumption thatA # is not a weak attractor forB.

�

An effective computation ofA # is provided in Ramadge and wonham 1987 b, sec. 7, based

on a fixed point characterization ofA #. The verification whetherA # is a weak attractor forB can

be accomplished by using the algorithm presented in section 5.



� �

- 16 -

4.2 Region of weak attraction

Let G = (V , E) be a process. In a previous section we showed that for everyE-invariant

subsetA there is a (unique) maximal subsetB for which A ⇐
G

B, and thus the notion of the region

of strong attraction is well defined. In this section we examine whether an analogous notion can

be defined for weak attraction. That is, given a nonempty subsetA ⊆ V, we want to know

whether the class of subsets that are weakly attracted byA is closed under set union, and hence

has a maximal element.

Let A beEu-invariant and define the class of subsetsWG(A) according to

WG(A) = { B ⊆ V  A ⊆ B and A ←
G

B } .

Proposition 4.3:

Let A be anEu-invariant subset ofV. Then the classWG(A) is nonempty and closed under

set union.

Proof

Let G = (V , E) and let A be anEu-invariant subset ofV. The nonemptiness ofWG(A)

follows from the fact thatA is a weak attractor for itself.

Let B 1 , B 2 ∈ WG(A), that is,A ←
G

B 1 andA ←
G

B 2. We have to show thatA ←
G

(B 1∪ B 2).

Recall that according proposition 4.1 there exist subprocessesG1 = (V 1 , E 1) andG2 = (V 2 , E 2)

such thatB 1 ⊆ V 1, B 2 ⊆ V 2 and each ofG1 and G2 satisfies conditions (b1)–(b3). It is quite

natural to verify whetherA is a weak attractor forB 1∪ B 2 by considering first the union ofG1

and G2, i.e., the processG12 = (V 1∪ V 2 , E 1∪ E 2), and checking whether it satisfies the

conditions of proposition 4.1. Indeed, it is easily seen that theA-connectivity and realizability

properties are preserved under union of processes. Thus the processG12 satisfies conditions (b1)
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and (b2). However,G12 − A is not necessarily acyclic and thus condition (b3) is not necessarily

satisfied. Nevertheless, in the following we show thatG12 contains a subprocessP satisfying

conditions (b1)–(b3).

Let C = u 0 , u 1 , . . . ,uk, uk = u 0 be a cycle ofG12 − A, and lets = e1 , e2 , . . . ,ek be the

path correspondingC, i.e., the end states of an edgeei areui −1 andui. For simplicity we assumed

here that there are no parallel edges inG and thus the paths is uniquely defined by the cycleC.

Since every edge ofC is in E 1∪ E 2, andG1 − A andG2 − A are acyclic, there exists at least one

edge, sayei, satisfying the condition that

(4.5)ei ∈ E 1 and ei +1 ∈ E 2 − E 1 .

It is clear that the removal of the edgeei +1, as well as the deletion of any other edge of the

cycle C, opensC. However, the exclusive consequence of the deletion ofei +1 is the opening of

C, without affecting conditions (b1) and (b2). That is,C is no longer a cycle ofG12 − ei +1 − A,

but G12 − ei +1 is still realizable andA-connected. This argument is proved as follows. Letui be

the end state ofei and the start state ofei +1. Sinceei ∈ E 1 andei +1 ∈ E 2 it is clear thatui is a

state inG1 andG2. Now, the deletion ofei +1 might affect only theA-connectivity ofui and those

states which are connected toA throughui. However, sinceei +1 ∉ E 1 andG1 is A-connected,

there exists a path fromui to A which does not traverseei +1. Consequently,G12 − ei +1 is A-

connected and condition (b2) is satisfied w.r.t.G12 − ei +1. As regards condition (b2), the

realizability ofG12 − ei +1 follows from the fact thatei +1 must be a controlled edge. Otherwise it

would have followed from (4.5) thatG1 does not include the uncontrolled edgeei +1 emanating

from the stateui ∈ V 1, contradicting our assumption thatG1 is realizable. So we have proved

thatG12 − ei +1 is realizable,A-connected and does not include the cycleC.

The procedure above is repeated for each cycle ofG12 − A (the number of these repetitions

is bounded by |E | ). By the argument of the preceding paragraph it is clear that at termination the

resulting subprocessP satisfies conditions (b1)–(b3). So, by proposition 4.1,
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A ←
G

(B 1∪ B 2) .

�

SinceWG(A) is finite and closed under set union it follows thatWG(A) contains a unique

supremal element w.r.t. inclusion, denotedΩG(A) and called theregion of weak attraction of A

w.r.t. G. If A is not Eu-invariant we say thatΩG(A) = ∅ . Further, ifΩG(A) = V we say thatA

is aglobal weak attractor w.r.t. G, denotedA ←
G

.

It is easily seen that

ΛG(A) ⊆ Ω G(A)

for everyA ⊆ V.

5. Computation of ΩΩG(A)

Fix G = (V , E) , ∅ ≠ A ⊆ V. In this section we propose an algorithm for the computation of

the region of weak attractionΩG(A). A by-product of this algorithm is a subprocess ofG

satisfying conditions (b1)–(b3). Further, the question of whetherA is a weak attractor for a

subsetB ⊇ A is equivalent to the question of whetherB ⊆ Ω G(A). Thus, the algorithm provides a

constructive method for verifying weak attraction.

Throughout this section we assume thatA is Eu-invariant, for otherwiseΩG(A) = ∅ .

We derive now an intuitive consequence of proposition 4.1 concerning the region of weak

attraction. Since, by definition,A ←
G

ΩG(A), it follows by proposition 4.1 that there exists a

subprocessG ′ = (V ′ , E ′) of G such that ΩG(A) ⊆ V ′ and G ′ satisfies condition (b1)–(b3).

Moreover,G ′ must satisfy the condition thatV ′ = ΩG(A). Otherwise the processG ′ would have

been a contradiction to the assumption thatΩG(A) is the largest subset for whichA is a weak

attractor.



� �

- 19 -

We have proved:

Proposition 5.1

Let G ′ = (V ′ , E ′) ⊆ G be a subprocess such thatΩG(A) ⊆ V ′. If G ′ satisfies (b1)–(b3), then

V ′ = ΩG(A) .

The subprocessG ′ = (V ′ , E ′) in proposition 5.1 is not necessarily unique. However, its state

setV ′ is unique. The result of the algorithm below for computingΩG(A) is a subprocess ofG

that satisfies conditions (b1)-(b3) and whose state set isΩG(A). But first we need the following

definition.

Let G ′ = (V ′ , E ′) ⊆ G = (V , E) be a process satisfying conditions (b1)–(b3), that is,G ′ is

realizable andA-connected andG ′ − A is acyclic. We say that a statev ∈ V−V ′ is G ′-attractable

iff v is a predecessor of a state inV ′ and every uncontrolled edge ofG leavingv ends inV ′, that

is, v ∈ V−V ′ is G ′-attractable iff

(i) ( ——
—
� (v , σ , u) ∈ E) u ∈ V ′ ; and

(ii) ( ∀ (v , σ , u) ∈ Eu) u ∈ V ′.

Now we are ready for the following

ALGORITHM

Input : A processG = (V , E) and a subsetA ⊆ V.

Output : A subprocessP whose state set isΩG(A).

(1) Let Po =∆ (Uo , Do) = <A >G , j : = 0.

(2) If there are noPj-attractable states inV − Uj

thenP = Pj, stop.
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(3) Let v ∈ V − Uj be aPj-attractable state.

DefinePj +1 =∆ (Uj +1 , Dj +1) as

Uj +1 = Uj ∪ { v }

Dj +1 = Dj ∪ { ( v , σ , u) ∈ E  u ∈ Uj } .

j : = j +1, go to (2).

That is, the construction of a subprocessG ′ whose state set isΩG(A) is started from the

subprocessPo induced byA (step (1) ). Then, in each iterationj a new subprocessPj +1 is

constructed (step (3) ) fromPj by adding aPj-attractable statev together with every edge going

from v to a state ofPj. This procedure terminates whenPj has no more attractable states (step

(2)).

Since in each iteration the state set ofPj increases by one state, the number of iterations is

bounded by |V | . Further, it is easily seen that the verification of step (2), namely that there

exists aPj-attractable state inV − Uj, is of complexityO( |Σ | |V | ). Thus, the complexity of the

algorithm above isO( |Σ | |V | 2).

The correctness of this algorithm is formally stated in the following theorem.

Theorem 5.1

Let P = (U , D) be the process obtained in step (2). Then

(i) P satisfies conditions (b1)–(b3).

(ii) U = ΩG(A).

For the proof of Theorem 5.1 we need the three following propositions. Intuitively, the first

proposition states thatA is a weak attractor for the state set of each processPj. Formally, we have
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the following

Proposition 5.2

For every iterationj, the processPj satisfies conditions (b1)–(b3), that is,Pj is realizable

andA-connected andPj − A is acyclic.

Proof of Proposition 5.2

This proposition is proved by induction on the number of iterations. Let

Po =∆ (Uo , Do) = <A >G, i.e., Po is the process induced byA. Trivially we have thatPo is A-

connected and thatPo − A is acyclic. The realizability ofPo follows from the facts thatA is Eu-

invariant and thatDo contains every edge ofG whose end points are inA. Thus, every

uncontrolled edge leaving a state inA is in Do.

Suppose the proposition holds for the iterationj, and letv ∈ V − Uj be aPj-attractable

state andPj +1 = (Uj +1 , Dj +1) be the process as defined in step (3). We have to show thatPj +1

satisfies conditions (b1)–(b3).

As regards (b1) and (b2) (A-connectivity and realizability), it is enough to consider the state

v in Pj +1 because according to the inductive hypothesisPj is A-connected and realizable. Indeed,

since v is Pj-attractable it follows thatv is a predecessor of a state ofPj, say u ∈ Uj.

Furthermore, the assumption thatPj is A-connected implies the existence of a path fromu to a

state inA, as well as fromv. SoPj +1 is A-connected. Next, thePj-attractability ofv implies that

every uncontrolled edge leavingv ends inUj, i.e., every uncontrolled edge leavingv is included

in Dj +1. SoPj +1 is realizable.

Finally, Pj +1 − A is acyclic becausePj − A is acyclic and every edge added toDj, in order

to form Dj +1, is directed fromv to a state inUj. Thus we conclude thatPj +1 satisfies conditions

(b1)-(b3).
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�

The second proposition clarifies the role of attractable states.

Proposition 5.3

Let P = (U , D) ⊆ G such thatA ⊆ U and P satisfies conditions (b1)–(b3). Then everyP-

attractable statev ∈ V − U is in the region of weak attraction ofA, i.e.,

v ∈ Ω G(A).

Proof of Proposition 5.3

Let P = (U , D) ⊆ G such thatA ⊆ U and P satisfies (b1)–(b3), and letv ∈ V − U be P-

attractable. Define the processP ′ = (U ′ , D ′) according to

U ′ = U ∪ { v }

and

D ′ = D ∪ { ( v , σ , u) ∈ E  u ∈ U } .

It is easily seen thatP ′ results fromP after one iteration of the algorithm above. Thus, by

proposition 5.2 it follows thatP ′ satisfies conditions (b1)–(b3). Further, by corollary 4.1 we get

that A is a weak attractor forU ′. Since by the definition of the region of weak attraction

U ′ ⊆ Ω G(A) it follows thatv ∈ Ω G(A), which completes our proof.

�

The final proposition required for the proof of theorem 5.1 characterizes the class of

subprocesses ofG whose state set is the region of weak attraction ofA.
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Proposition 5.4

Let P = (U , D) ⊆ G such thatA ⊆ U andP satisfies conditions (b1)–(b3). Then

U = ΩG(A)

if and only if there are noP-attractable states inV − U.

Proof of proposition 5.4

Let P = (U , D) ⊆ G = (V , E) such thatA ⊆ U andP satisfies conditions (b1)–(b3).

(If). Let X denote the set of all states inV − U that are predecessors of a state inU, i.e.

X = { x ∈ V − U  ( ——
—
� (x , σ , u) ∈ E) u ∈ U } ,

and suppose that every state inX is notP-attractable. We have to prove thatU = ΩG(A).

First notice thatP satisfies conditions (b1)–(b3) and thus, by corollary 4.1,U ⊆ Ω G(A). For

the reverse inclusion we shall show first that none of the states inX can be in the region of weak

attraction ofA, i.e.,

X ∩ ΩG(A) = ∅ .

For this let x1 ∈ X ⊆ V − U and suppose, towards a contradiction, thatx1 ∈ Ω G(A).

According to proposition 4.1, if (U∪ { x1 } ) ⊆ Ω G(A) then there exists a subprocess

G ′ = (V ′ , E ′) of G such that (U∪ { x1 } ) ⊆ V ′ andG ′ satisfies conditions (b1)-(b3). Since none

of the states inX is P-attractable then there exists an edgee1 = (x1 , σ , v1) ∈ Eu such that

v1 ∉ U. The edgee1 is uncontrolled and thuse1, as well asv1, must be included inG ′.

OtherwiseG ′ could not be realizable (condition (b2)). Moreover,G ′ is A-connected and thus it

must contain a trajectory fromv1 to a state inU (notice that every state inU is connected toA ).

Now, sincev1 ∉ U there are two possibilities: eitherv1 ∈ V − U − X or v1 ∈ X.

(i) If v1 ∈ V − U − X then every trajectory ofG ′ from v1 to a state inU must include at least

one state inX (this is because every predecessor of a state inU is in X). Let t be such a
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trajectory, namely a trajectory connectingv1 to U, and letx2 be the first state inX traversed

by t. Subsequently, denote byt 1 the subtrajectory oft connecting v1 to x2, i.e.,

t 1 = v1, . . . ,x2. Notice that none of the states oft 1 is a state inU (written t 1∩U = ∅ ).

Also, the conditionx2 ≠ x1 must be satisfied in order thatG ′ − A will be acyclic (otherwise

G ′ − A will contain the cyclex1 , t 1 ).

(ii) If v1 ∈ X thenx2 = v1 andt 1 is the empty trajectory.

Sincet 1 is a trajectory ofG ′ thenx2 is also a state ofG ′. So we conclude that

x1 ∈ V ′ implies x2 ∈ V ′ .

Following the argument of the previous paragraph we get thatG ′ must contain a trajectory,

sayt 2, connectingx2 ∈ X to x3 ∈ X, wherex3 ≠ x2, x3 ≠ x1 andx3 ∈ V ′.

Continuing this procedure we end up with the following conclusions regarding the process

G ′ : x1 is connected tox2 by t 1, x2 is connected tox3 by t 2 , . . . , xn −1 is connected toxn by

tn −1, xn is connected toxj , 1 ≤ j ≤ n, by tn and

x1 , x2 , . . . , xn ∈ V ′

wheren is number of states inX andxi≠xj , i≠j.

It is readily verified that the trajectorytj , tj +1 , . . . , tn forms a cycle inG ′ − A (notice that

A ⊆ U and ti∩U = ∅ , 1 ≤ i ≤ n ). Thus we conclude that the assumptionx1 ∈ V ′ ⊆ Ω G(A)

implies X ⊆ V ′. However, the requirement fromG ′ to beA-connected implies the existence of a

cycle inG ′ − A, contradicting condition (b3). So

(5.1)X ∩ ΩG(A) = ∅ .

As regards the rest of the states inV − U ; since every path from a state inV − U − X to a

state inA must traverse at least one state inX it is clear that

(5.2)(V − U − X) ∩ ΩG(A) = ∅ .
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>From (5.1) and (5.2) we get thatΩG(A) ⊆ U, which concludes the "if" part of this proof, i.e.,

U = ΩG(A) .

(Only if). SupposeU = ΩG(A) and assume there exists a statev ∈ V − U such thatv is P-

attractable. However, by proposition 5.3 it follows thatv ∈ Ω G(A), contradicting our assumption

thatU is the region of weak attraction ofA.

�

Proof of Theorem 5.1

Let P = (U , D) ⊆ G = (V , E) be the process obtained in step (2) of the algorithm. By

proposition 5.2 it is clear thatP satisfies conditions (b1)-(b3). Further, since every state inV−U

is notP-attractable (according to the condition of step (2) ) then by proposition 5.4

U = ΩG(A) .

�

6. Example

Let G = (V , E) be a process as displayed below:
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Figure 1.

The state set ofG is V = { 0 , 1 , . . . , 7 } , and theedge set isE = { ui } ∪ { ci } . The edges

denotedui are uncontrolled whileci denotes a controlled edge.

First we comment that the subsetA 1 = { 1 , 2 } cannot be a strong attractor for any subset

of V (sinceA 1 is not E-invariant). Nevertheless,A 1 is Eu-invariant and thus it has a potential to

become a weak attractor (e.g., by the deletion ofc5).

Next we consider the subsetA = { 0 , 1 , 2 } . Clearly A is E-invariant, and if

B 0 = A ∪ { 3 } then A is a strong attractor forB 0 w.r.t. G. It is easily seen thatB 0 is the maximal

subset ofV which is strongly attracted byA. That is, ΛG(A) = B 0 . Further, we remark that the

region of strong attractionΛG(A) can be computed in polynomial time by using the transitive

closure ofG (see at the end of section 3).

We examine now the weak attraction problem, namely given two subsetsA , B of V, decide

whether there exists a supervisorS such thatA is a strong attractor forB w.r.t. (S/G). To this end,
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let A = { 0 , 1 , 2 } , B 1 = A ∪ { 3 , 4 } and B 2 = A ∪ { 7 } . Recall that we defined weak

attractionA ←
G

B as the possibility of drivingG (under control) from every initial state inB to

some state inA. Consequently, the deletion of the controlled edgec3 implies A ←
G

B 1.

Furthermore, it is readily verified that the subprocess< B 1 >G (i.e. the subprocess induced by the

states ofB 1) satisfies the conditions of weak attraction, as stated in proposition 4.1.

As regardsB 2, it can be shown that no subprocess ofG, whose state set containsB 2,

satisfies the conditions of proposition 4.1 (i.e., (b1)-(b3)). Thus we conclude thatA is not a weak

attractor forB 2. Intuitively, this result can be explained as follows: SupposeG is initialized at

state 7∈ B 2. Then eitherG reaches state 0 (and then is captured inA) or it executesu 7 and

reaches state 6. Since the edgeu 7 is uncontrolled (and thus cannot be removed fromG) it follows

that the edgec9 must not be deleted fromG. Otherwise the subsetA = { 0 , 1 , 2 } is not

reachable from state 6. However, the latter conclusion and the fact thatu 6 is uncontrolled imply

the existence of the cycleC = 6 , 5 , 6. The cycleC prevents the guaranteed attraction of state 7

to a state inA, i.e., if G is initialized at state 7 then no control strategy can assure thatG (under

control) will reach the subsetA after executing a finite number of state transitions.

The existence of a subprocessG ′ as required in proposition 4.1 can be effectively verified

by using the algorithm of section 5 for computing the region of weak attraction. If we apply the

algorithm to this example we obtain the following steps:

(i) Start with the subprocessPo = <A >G = ( { 0 , 1 , 2 } , { u 3 , u 4 , c4 , c5 } ); (step (1)).

(ii) A candidate state for the next step is any predecessor of a state inA which is Po-

attractable. Since the uncontrolled edgesu 7, u 6 andu 5 lead to a state inV −A, none of

the states 7 or 5 isPo-attractable. Thus, choose for example state 3 and construct (step

(3)) the subprocess
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P 1 = ( { 0 , 1 , 2 , 3 } , { u 3 , u 4 , c4 , c5 , c2 , u 1 } )

= < { 0 , 1 , 2 , 3 } >G .

(iii) Only state 4 isP 1-attractable and thus construct (step (3) again) the subprocess

P 2 = ( { 0 , 1 , 2 , 3 , 4 } , { u 3 , u 4 , c4 , c5 , c2 , u 1 , u 2 , c1 } )

= < { 0 , 1 , 2 , 3 , 4 }>G .

(iv) There are noP 2-attractable states and thus the algorithm terminates; (step (2)).

By theorem 5.1 we conclude thatΩG(A) = { 0 , 1 , 2 , 3 , 4 } = B 1, and thatP 2 satisfies the

conditions of proposition 4.1. Based onP 2, a control pattern achieving weak attraction ofB 1 by

A is readily synthesized (see the proof of proposition 4.1).

As was explained in the paragraph following proposition 5.1, the resulting process in step

(2) is not unique. For example, if we had interchanged steps (ii) and (iii) we would have ended

up with the processP 2 − c1. Nevertheless, the region of weak attraction ofA is yetB 1, since the

state set ofP 2 − c1 is B 1. This illustrates the consequence of proposition 4.3, namely that the

region of weak attraction is well defined.

Our intuitive conclusion thatA is not a weak attractor forB 2 is now an immediate

consequence of the fact thatB 2 is not a subset ofΩG(A).

We end this example by pointing out the close relation between attraction properties and the

problem of recovery from control failures. For example, supposeA = { 0 , 1 , 2 } is the ’legal’

state set ofV, and that a control failure may causeG to reach the illegal state 7. SinceA is not a

weak attractor forB 2, no control strategy can assure a guaranteed recovery (i.e., a guaranteed

return of G (under control) to a legal state inA) from this control failure. On the other hand,

A ←
G

B 1 implies the existence of a supervisor achieving guaranteed recovery from control failures

causingG to reach states 3 or 4. Such a supervisor is readily synthesized by using the output of

the algorithm in section 5.
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7. Conclusion

The paper has presented the concept of strong attraction which plays a key role in the

investigation of the following problems. The first one is the ability of a process to reach a set of

target states from an arbitrary state and then remain there indefinitely. Another problem, which is

closely related to the former, is the recovery from control failures. Finally, a special kind of

asymptotic behavior of a process has been characterized as its minimal strong attractor. The first

two problems were examined also under control, and an efficient procedure for synthesizing

controllers that improve the attraction ability of processes has been proposed. The properties of

such controllers and the extension of the above results for other representations of discrete event

processes are interesting topics for further research.
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